АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ И СЕРТИФИКАЦИЯ

по направлению 24.03.04 Авиастроение (бакалавриат)

1. Цели и задачи освоения дисциплины

Дисциплина «Метрология, стандартизация и сертификация» относится к циклу профессиональных дисциплин и изучается студентами в течение 7 семестра. Для изучения дисциплины студент должен обладать знаниями по дисциплинам «Математика», «Информатика» и «Физика», устанавливаемыми ФГОС ВПО по направлению подготовки 24.03.04 Авиастроение.

Дисциплина является предшествующей для изучения последующих дисциплин профессионального цикла, выполнения экспериментальных частей курсовых работ и проектов, а также выполнения выпускной квалификационной работы.

Целью изучения дисциплины «Метрология, стандартизация и сертификация» является подготовка будущих бакалавров к решению организационных, научных, технических и правовых задач метрологии, стандартизации и сертификации, методов и средств измерений физических величин при проектировании, производстве и эксплуатации разнообразных технических устройств.

Задачи дисциплины — получение теоретических знаний и практических навыков по основным вопросам метрологии, стандартизации и сертификации, обучение студентов современным методам и средствам измерений физических величин, которые обеспечивают в будущем их квалифицированное участие в многогранной деятельности по профилю подготовки: «Теория и математические методы системного анализа и управления в технических, социальных и экономических системах».

2. Место дисциплины в структуре ООП ВО

Курс входит в обязательную часть Блок 1. «Дисциплины (модули)» (Б1.О.14) Основной Образовательной Программы по направлению **24.03.04 Авиастроение.**

Для ее изучения студенты должны обладать следующими компетенциями:

- ОПК-1. Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности;
- ОПК-2. Способен использовать современные информационные технологии для решения типовых задач по проектированию, конструированию и производству объектов профессиональной деятельности;
- ОПК-3. Способен участвовать в разработке технической документации, связанной с профессиональной деятельностью с использованием стандартов, норм и правил;
- ОПК-5. Способен использовать современные подходы и методы решения профессиональных задач в области авиационной и ракетно-космической техники;

Полученные в ходе освоения дисциплины «Метрология, стандартизация и сертификация» профессиональные компетенции будут использоваться в профессиональной деятельности, а так же теоретические и практические знания и навыки далее используются при изучении следующих дисциплин:

- 1. Инженерная и компьютерная графика
- 2. Конструкция и основы производства летательного аппарата
- 3. Проектирование средств технологического оснащения

- 4. Математическое моделирование механических конструкций
- 5. Динамика и прочность конструкций изделий авиационной техники
- 6. Физические основы процессов формообразования
- 7. Детали машин и основы конструирования
- 8. Введение в технологию машиностроения
- 9. Сопротивление материалов
- 10. Курсовая работа
- 11. Дипломное проектирование.

3. Требования к уровню освоения дисциплины

В результате освоения дисциплины студенты должны обладать следующими профессиональными компетенциями:

ОПК-1

Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности

Код и наименование реализуемой компетенции	Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций
ОПК-1	Знать:
Способен	Основные метрологические правила, требования и нормы; принципы
применять	действия средств измерений, методы измерений различных
естественнонаучные	физических величин; правила обработки результатов измерений и
и общеинженерные	оценивания погрешностей; правила выбора методов и средств
знания, методы	измерений.
математического	Уметь:
анализа и	Проводить естественнонаучные и общеинженерные эксперименты
моделирования,	по заданным методикам и анализировать полученные результаты
теоретического и	исследований методами математического анализа и моделирования.
экспериментального	Владеть:
исследования в	Естественнонаучными и общеинженерными знания, методами
профессиональной	математического анализа и моделирования, теоретического и
деятельности;.	экспериментального исследования в профессиональной
	деятельности.

2. Общая трудоемкость дисциплины

Общая трудоемкость дисциплины составляет 3 зачетные единицы (108 часов).

3. Образовательные технологии

При реализации учебного процесса применяются классические образовательные технологии: лекции для изложения теоретического материала, практические занятия и лабораторные для изучения методов расчета и анализа деталей машин.

При организации самостоятельной работы используются следующие образовательные технологии: самостоятельная работа, сопряженная с основными

аудиторными занятиями (проработка учебного материала с использованием ресурсов учебно-методического и информационного обеспечения дисциплины); подготовка к практическим занятиям; выполнение лабораторных работ; самостоятельная работа под контролем преподавателя в форме плановых консультаций, при подготовке к сдаче экзамена; внеаудиторная самостоятельная работа при выполнении студентом заданий.

4. Контроль успеваемости

Программой дисциплины предусмотрены следующие виды текущего контроля: опросы, отчеты по лабораторным работам, тесты.

Промежуточная аттестация проводится в форме зачета.